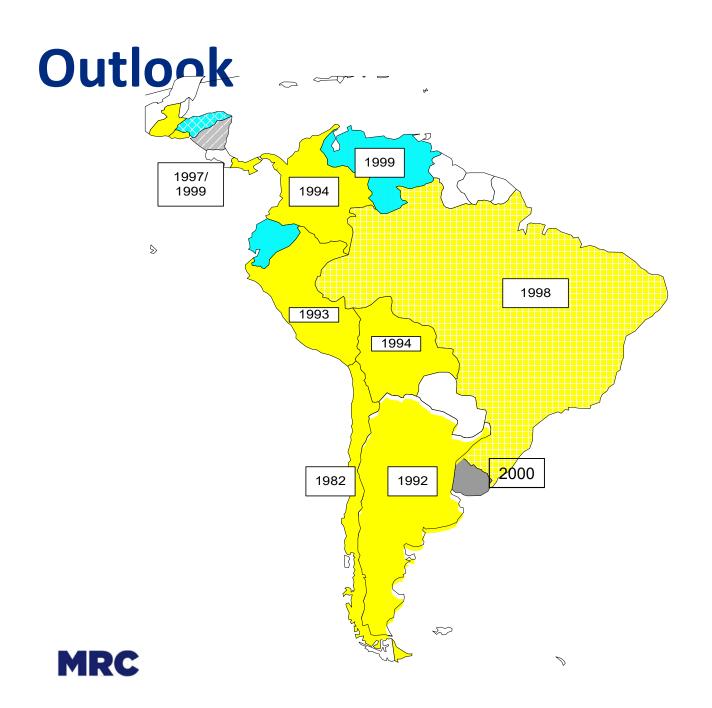


ELECTRICITY MARKET PROFESSIONAL PROGRAM


LATIN AMERICAN POWER SECTOR REFORMS - ARGENTINA

Roberto D'Addario

EMP @ LUMS July 17-22, 2018

GENERAL EXPERIENCES IN LATIN AMERICAN POWER MARKETS

Latin America – In Common

- Developing economies
 - □ Need for a sustainable energy sector with competitive prices for economic growth
- Energy resources :
 - □ Hydroelectricity
 - □ South America : Natural Gas
- Need to develop infrastructure
 - □ Transmission
 - ☐ Gas pipelines and distribution
- Expand electrification

Preexistent Characteristics

- Public integrated utilities
- Governments had all responsibilities
 - ☐ System Planning:
 - Energy demand projections
 - System planning: when, what and where to invest
 - ☐ Investor and Risk taker
 - Financing
 - Project administrator
 - ☐ Administration of Public Utilities
 - System operator and dispatcher
 - Supply, operation and maintenance
 - □ Tariff setting

Problems

- □ Lack of Investment
 - Financial difficulties
 - Delay in projects
 - Problems in design and exploration
- □ Inefficient manager of utilities
 - High unavailability and restrictions
 - High costs and losses
 - Problems in quality of service
- ☐ Tariffs did not allow cost recovery
- □ Lack of environmental standards and energy efficiency

The Chosen Solution

- Redefine the responsibilities of the Government
- Restructure the energy sector and promote competition
- Comprehensive legislation and regulatory conditions for private investors to participate taking market risks
- Deregulate and diversify where possible
- Regulate monopolies with efficient costs
- Pass through of efficient costs and of benefits competition to tariffs
 - □ Lower costs lead to lower tariffs

Why It Worked

- Principal objective was not privatization but to increase efficiency and better power supply quality
- The will (and belief) that restructuring was needed
 - Existing organization created more problems than solutions
- The creation of a task force with local know how (technical experts form utilities and Ministry)
 - □ Consultants work for the task force
- Comprehensive negotiations with politicians and unions
 - □ Agree benefits and conditionalities

Restructuring (1)

- Roles of the Government
 - □ Be the policy maker through defining organization and rules of the Sector
 - Legislation and regulatory framework
 - Market design, rules for efficiency and economy
 - □ Promote electrification and energy efficiency
 - Explicit subsidies
 - Programs to increase knowledge
 - Abandon (total or partially) role as investor and/or manager
 - Energy businesses to attract private investors and promote efficiency

Restructuring (2)

- Create the necessary institutions
 - □ Independent Regulatory Entity
 - Independent Regulatory Entity
 - Licenses
 - Service and tariff regulation for monopolies
 - □ Independent System Operator
- Decide unbundling issues
- Clarify system planning roles
 - System operator
 - Transmission company
 - Generators and Distributors

Unbundling and Diversification

- Specialization:
 - □ Specific rules adapted to each activity
- Unbundling for efficiency, considering realities
 - □ Distributors can own generation with limits
 - Generators and Distributors can own lines to connect to the principal grid
- Create business units of integrated utilities by activity and/or localization and/or type
- Open to private investment and new entries
 - ☐ Rules to promote efficient investment
 - □ Risk taker (contracts instruments to hedge risk)

Transparency

- Independent Regulator
- Non discriminatory operation rules
 - □ Regulation and framework for system operation and market administration
 - □ Pricing and settlement system
- Open access to information.
 - □ Technical Data
 - □ Market results (commercial)
- Independent System operator
- Define environmental requirements
- Rules for pass through of costs to tariffs

Efficiency and Competition (1)

- Prices are "set by the Market" to promote necessary investment
 - Prices show relation between offer and demand
 - □ Prices show scarcity.
- Market Participant's income = results of market commercial operations.
 - □ Incentives to take market risks and be market efficient
- Big Consumers:
 - ☐ Freedom to choose supplier
 - ☐ Facilitates investments for special quality needs

Efficiency and Competition (2)

- Distribution and transmission monopolies
 - □ Multi year tariffs
 - Maximum regulated wheeling tariffs
 - Rules, methodologies and parameters for tariffs adjustments
 - Obligations as service provider (quality standards)
 - Compensations to consumers for bad quality
- Small Consumers
 - Regulated maximum tariffs
 - Compensations to consumers for non supply

Market Rules Characteristics

- Predictable and Transparent.
- Minimize implementation costs.
 - □ Keep it simple (no unnecessary complexity).
- Take in consideration realities
 - □ Respect legal conditions and pre existing conditionalities
 - □ Reflect physical infrastructure
- Open
 - □ New entries
 - □ Promote regional interconnections
- Special rules for transition and possible initial lack of competition. Gradual implementation

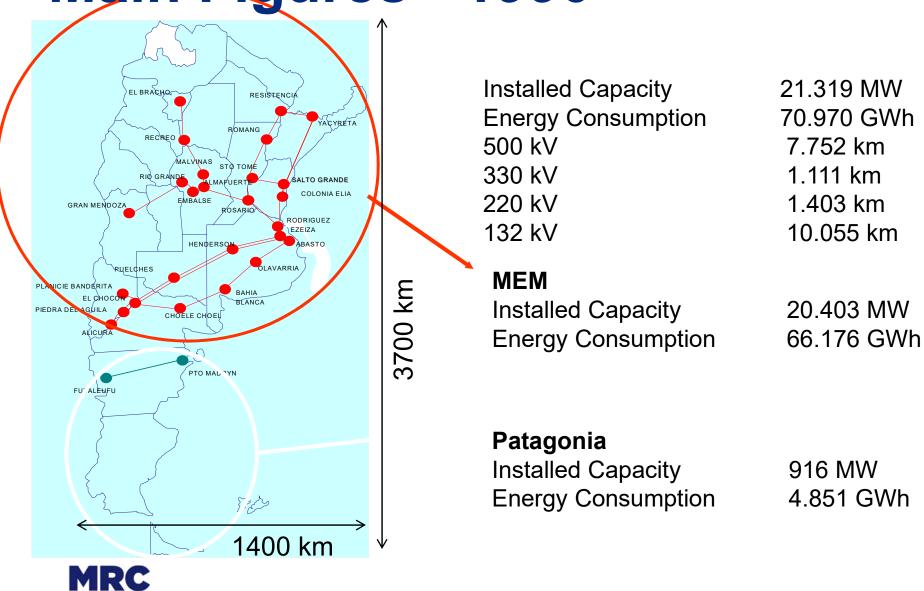
Planning the Transition

- Initial simple rules
 - □ Using existing operation experience and procedures
 - Program gradual increase in quality of service and, if necessary, sophistication
- Design open access and transmission pricing
- Communication systems
 - □ Maximize use of existing communication and data systems
- Tariffs
 - ☐ Minimize possible initial impact
 - □ Design, if necessary, special initial contracts

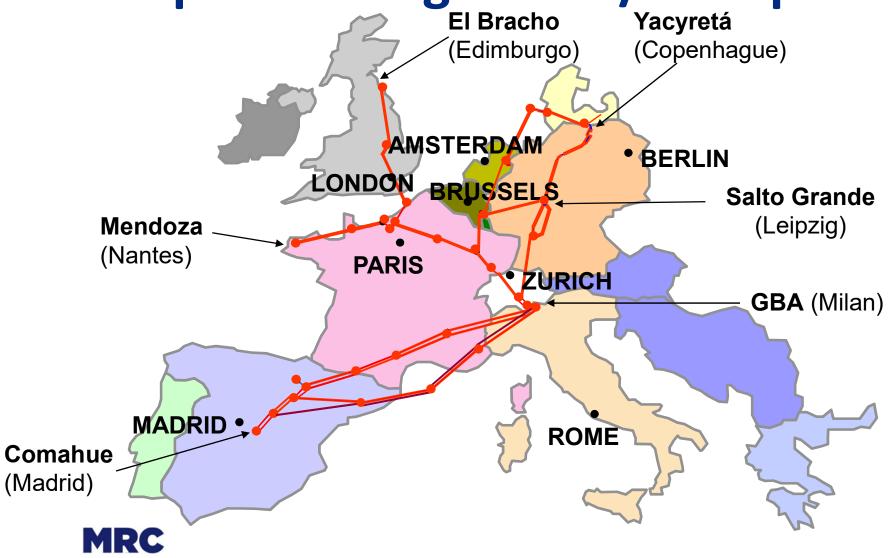
Wholesale Electricity Markets

- Tight Pool
 - Reflects preexistent centralized dispatch and hydro optimization
 - □ Obligatory centralized dispatch
 - □ Hourly prices
- Independent System Operator is also Market Administrator
 - □ Based on existing Dispatch and Control Center

Generation Capacity


- Capacity: a different product
 - ☐ "Secure" payment for efficient or competitive generation
 - □ Paid independently of energy generated, to guarantee enough installed capacity
- Pelated to security of supply
 - □ Avoid power shortages
- Pool Generation Capacity price
 - ☐ Regulated price = investment cost of typical peak unit (e.g. open cycle gas turbine)

THE ARGENTINEAN CASE



Main Figures - 1990

HV SYSTEM

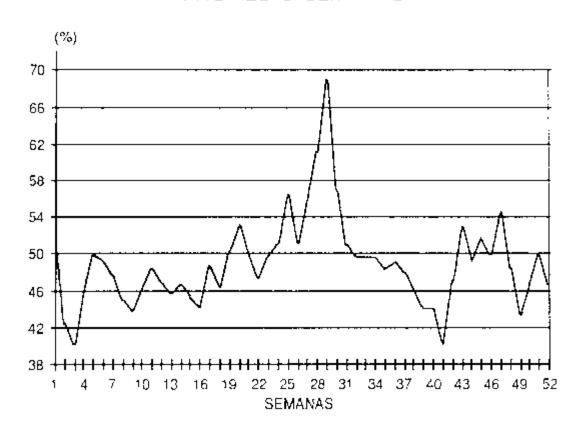
Comparison Argentina / Europe

Pre-existing Conditions (1990).

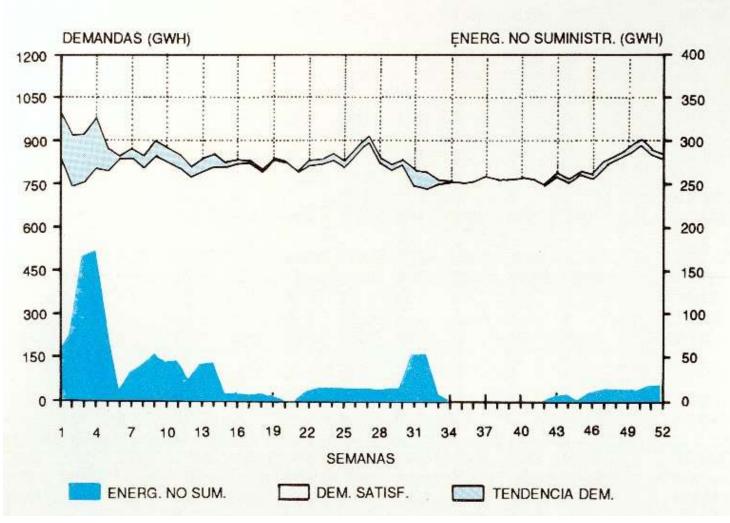
- Secretary of Energy
 - □ Policy Maker
 - □ Regulator
 - □ Companies Shareholder
- Electricity sector crisis:
 - □ Load shedding up to 20% of national demand
 - ☐ High unavailability
 - □ Payment chain broken
 - Discos didn't pay Gencos
 - Gencos didn't pay Fuel Companies
 - ☐ High deficit in the sector
 - Very high losses (technical and non technical)

Pre-existing Conditions (1990).

- Governance crisis:
 - □ Companies in hands of:
 - medium level management
 - unions
 - suppliers
- Tariffs system:
 - □ Cost Plus (accounting costs recognition)
 - generalized corrupted information systems
 - ☐ Highly politicized tariffs
- Inefficient investments


Pre-existing Conditions (1990). Structure.

	G	T 500	T HV	Operation	Distribution
AyE	21 %	52 %	6 Regional Systems	National Dispatch 6 Regional CC	8 %
Segba	23 %	25 %	3 %	T&D Control Center	45 %
Hidronor	13 %	45 %	-	1 Control Center	-
Provincial Companies	10 %	-	Various	-	13 Comp. 37 %
Nuclear	16 %	-			
Generation Bi-National	17 %	-	-	-	-


Thermal Unavailability (1990)

INDISPONIBILIDAD TERMICA TOTAL SIN PROMEDIO SEMANAL

Load Shedding 1989 (GWh vs week)

New Legal Framework

- Began with the passage of two fundamental laws
 - □ Economic Emergency Law
 - prohibited central bank financing government deficits
 - ☐ Administrative Reform Law
 - rules for investment in federally-owned companies
 - gave the federal government authority to privatize federal companies
- Electricity Law
 - legal structure for restructuring and privatizing the electricity industry.
- Amendment to the Foreign Investment Law
 - removed restrictions that applied only to foreign investors

Basic Aims of Restructuring (1)

- Transfer to the private sector commercial activities associated to the electricity services
- Release the State from the burden of the sector deficit and expansion financing (concentrate the use of scarce State resources in non transferable responsibilities)
- Take advantage of modern management skills available in private companies.
- Concentrate the State activities in regulating tariffs and guaranteeing quality of service and fair competition
- Environmental policy for the electricity sector established and controlled by the State

Basic Aims of Restructuring (2)

- Increase competition and efficiency
- Encourage private investment in generation, transmission and distribution, to secure long-term supply at reasonable costs.
- Increase quality of service and availability
- Maximize economic use of energy resources and transmission infrastructure
- Competitive tariffs that reflect efficient economic costs
- Promote regional power trading

Basic Aims of Restructuring (3)

- Competition for all those activities where that is possible
- Regulation where competition doesn't guarantee convergence between public interests and service providers interests
- Privatization
- Roles rearrangement and creation of new institutions:
 - □ Energy Policy: Energy Secretariat.
 - □ National Regulatory Entity (ENRE)
 - □ System Operator and Market Administrator (CAMMESA)
- Government withdrawal from investment and planning roles

Energy Secretariat

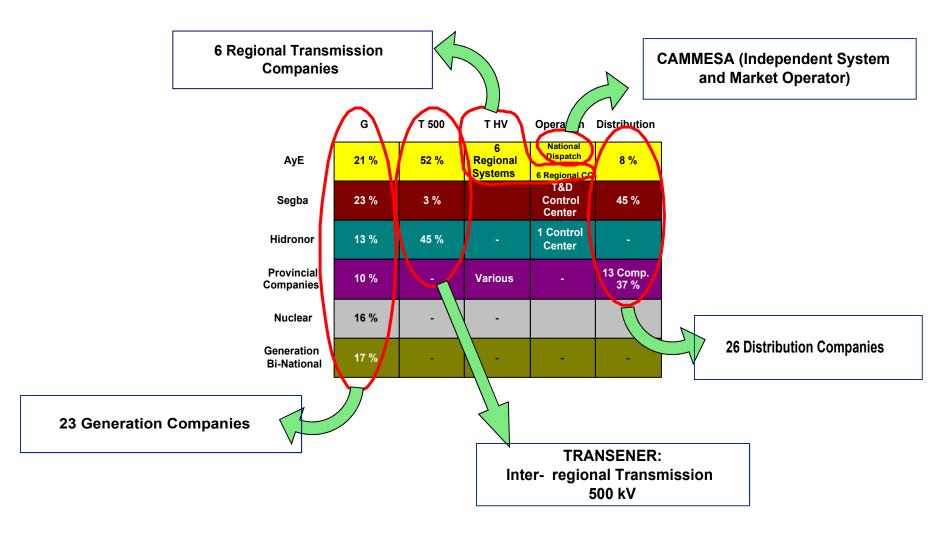
- ☐ Sets Energy Policy, including:
 - Alternative energy resources and demand side management
 - Policy for supply of Rural Areas
- □ Power Industry Regulation
- □ Indicative Forecasts
- □ Statistics
- ☐ Second Stage Conflict Solving Forum
- □ Market Participant's Entry Authorization

National Regulatory Entity (ENRE)

- In charge of controlling the compliance of the obligations set forth in the concession agreements
 - □ Distribution and Transmission Tariffs
 - □ Distribution and Transmission Quality of Service
- Apply Penalties

CAMMESA

- □ Wholesale Operator and Administrator
- □ Private non profit company
- ☐ A share holding company. Shareholders:
 - 20 % Generators Association
 - 20 % Distributors Association
 - 20 % Transmitters Association
 - 20 % Large Consumers Association
 - 20 % Federal Government
- □ Main Functions
 - Long, medium and short term operational planning
 - Seasonal prices calculation
 - Centralized economic merit order dispatch
 - Real time operation



CAMMESA - Organization

- Board of directors. Policies of Company
 - □ 2 members per shareholder group.
 - □ President: Representative of Government.
- Executive Committee. (Administrative) 3 members:
 - □ Chairman: appointed by the market (full time).
 - □ Large Consumers: permanent
 - □ 1 representative of the industry: 1 year shift each
- General manager (Technical, Commercial):
 - ☐ Isolate political direction from system operation and market administration
 - Transparency: Technical and commercial rules defined by Energy Secretariat

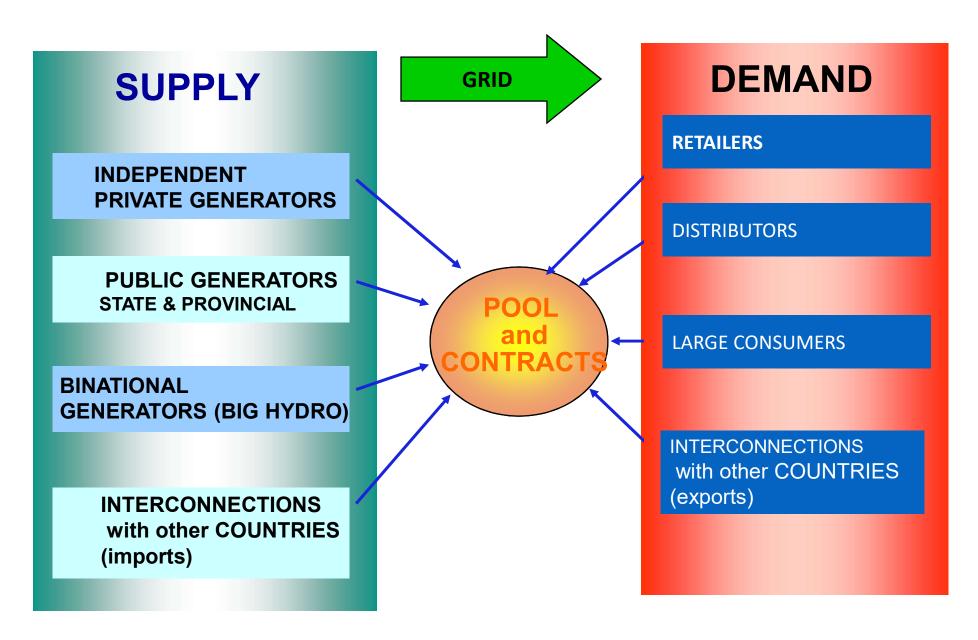
Pos-restructuring Structure (1993)

Privatization

- Stock Classes
 - □ Class A: 51 ~ 60% (control)
 - □ Class B: 30 ~ 40% (free Stock Exchange)
 - □ Class C: 3 ~ 10% (reserved for workers)
- Selling of Stocks Class A and eventually part, nothing or all Stocks Class B.
- Workers were authorized to pay for Stocks Class C with dividends produced by the companies
- Typically the State keept as much Stock Class B for future selling (good business).
- Public Bonds (nominal value) were accepted as way of payment.

Timing

	1990	1991	1992	1993	1994	1995
Legal Framework and rules						
Companies restructuring						
Privatization						


	Restructuting	Privatization
Federal Distribution	1991-1992:	1992
Thermal Generation	1991-1992	1992-1994
Transmission	1992	1992-1994
Hydro Generation	1992	1993-1995
Provincial Distribution		1993, continues
Nuclear and Bi-national Hydro	Non Privatized	
Creation of ENRE	1993	
Creation of CAMMESA	1992	

WHOLESALE ELECTRICITY MARKET

Market Structure

Dispatch, Products and Trading

- □ Centralized Security Constrained Economic Dispatch
 - Software approved by the regulator
- □ Products that are bought and sold
 - energy
 - capacity
 - ancillary services.
- □ Ways of trading
 - Long and Medium term agreements : Through contracts
 - Short term opportunity trading : in the Spot Market

Energy Pricing (1)

- Based on declaration of costs
 - □ Thermal Units:
 - Variable production cost for each fuel it can burn
 - Cap price, related to a international fuel markets or local fuel prices, fuel transportation and heat rates.
 - ☐ Hydro Power plants
 - Water values for different levels in the reservoir
 - Expected future replacement cots.
 - □ Imports from other Markets:
 - Bid at the interconnection

Energy Pricing (2)

- □ Quality of Supply
 - Operation reserve for frequency regulation and load following
- □ Risk of non supply (deficit or insufficient reserve)
 - Social and economic costs for different levels of non supply
 - Cost increases as risk or deficit increases
 - Short term signal to lack of investment or lack of quality.
- □ Spot (Pool) Price
 - Hourly cost to supply an increase of the load (local+exports), maintaining the required reserve
 - Defined at the system load center (Market Node).

Energy Pricing

Marginal Cost Thermal Generators (MC)

- Generation Variable Cost
- Heat Rate

MP (load, reserve) = f (CM, WV, CMBASE, NSE)

Cost to supply next MW with quality of service

Marginal Cost Hydro Plants (WV)

- * Reservoir Level
- * Water Value (WV)

NSE: non supplied energy

CMBASE: Start up Costs (base load units)

Marginal Cost of risk of non supply (deficit or lack of reserve

NSE in u\$s/MWh

< 1,6% 120

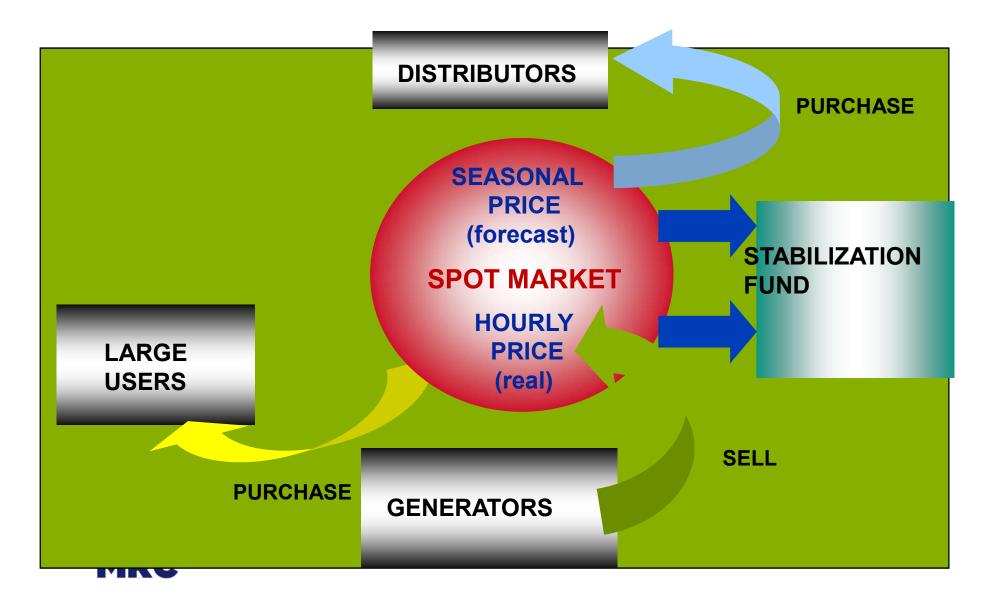
< 5,0% 170

< 10,0% 240

> 10,0% 1500

Nodal Energy Pricing

- □ Nodal energy prices
 - Price at each node reflects marginal losses to connect the node to the Market node (Nodal Factors).
 - smaller than 1 at exporting nodes
 - bigger than 1 at importing nodes
- ☐ Transmission congestion = Local (zonal) pricing
 - If congested area has power surplus, prices fall and are lower than Market prices
 - If congested area has power deficit or expensive generation, prices increase and are higher than Market prices



Stabilized Energy Pricing

- For Distribution companies and consumers tariffs:
 - ☐ Transfer (pass through) Pool prices to consumers' tariffs
 - □ Seasonal stabilized price (three months)
 - Average expected spot price for the next 3 months
 - Stabilization Fund absorbs differences between seasonal prices and real Pool prices of the previous stabilization period.
 - □ CAMMESA calculates:
 - forecasted Spot prices for next 3 months
 - Differences absorbed by Fund
 - ☐ Energy Secretariat defines seasonal price

Stabilized Energy Price

Generation Capacity Pricing

- □ Price
 - Set in the Market Node
 - Each off valley hour of working days: 10 U\$S per MW
 - All other hours, 0 U\$S
- □ Zonal generation capacity price:
 - Affected by the reliability and quality of the transmission system required to connect the area to the Market node
 - Adaptation Factor measures the extra costs because of probability of transmission outages.

Generation Capacity Payment

□ Thermal Unit

- Paid generated capacity plus hot spinning reserve and cold back up reserve
- Guaranteed a monthly payment of at least the average yearly generation capacity that would be dispatched on the driest hydrological recorded conditions (dry year reserve)
 - Dry year reserve for each unit calculated monthly as:
 - (Predicted capacity required for dry year)
 - (Real capacity generating or spinning or cold reserve)
- □ Hydro Power plants
 - Payment for generated capacity plus spinning reserve

Restrictions and Must Run

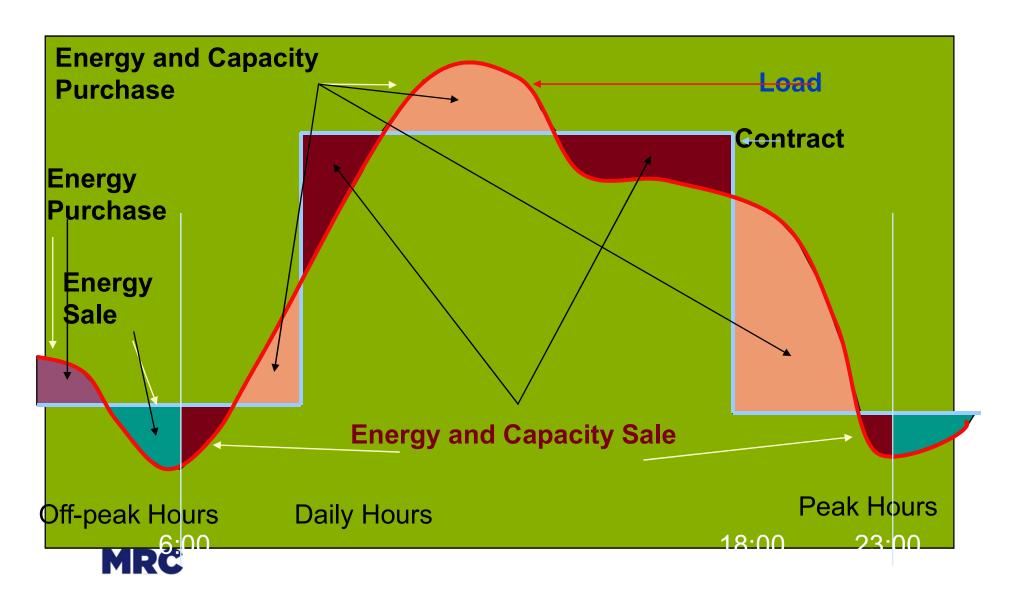
- Priority: reliability and quality of service
 - □ Restrictions to system operation
- CAMMESA must schedule generation because of restrictions, independent of merit order (must run generation)
 - □ Not a result of competition in Market
 - Prices for must run generation are regulated (Generator has market power) only to recover generation costs
 - □ Load pays extra cost equal to difference between
 - Price it could have bought in the Pool (if restrictions did not exist)
 - and regulated price of must run

Supply Contracts (1)

- Seller: Generator or Trader
 - □ Obligation to supply, but not to generate
 - Cannot force a specific unit
 - Centralized dispatch does not take into account contracts.
- Buyer: Distribution Company, Large Consumers, Traders
 - □ Obligation to pay contracted amounts, but can re-sell
- **■** Commitment:
 - Blocks of energy to be supplied in the future at contracted prices
 - Financial bilateral contracts (price) but become physical in deficit conditions

Supply Contracts (2)

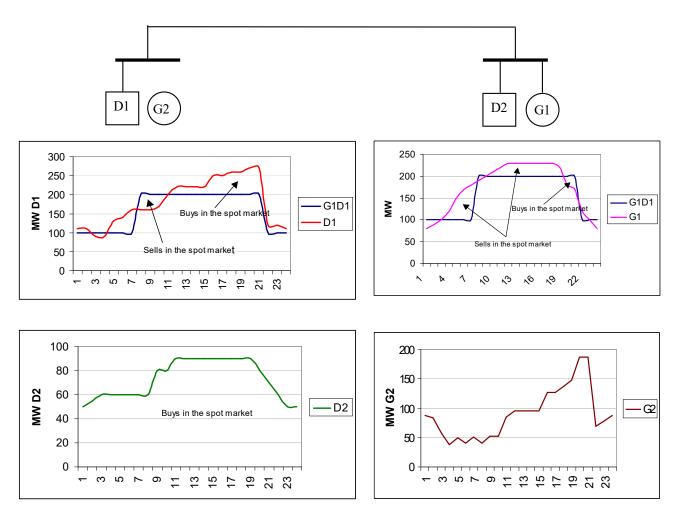
- For seller;
 - □ Units are dispatched according to the merit order list (contracts are not taken into account)
 - Difference between seller's generation in real time dispatch and contact commitments is cleared in the Spot Market:
 - If not dispatched up to contract commitment, buys the difference in the Pool (at energy price lower than own generation costs)
 - If unavailable, can buy from the Spot market the energy and capacity needed to supply contracts (price risk) if there is enough extra energy available (risk of not fulfilling contract)



Contracts (3)

- For buyer (Large Consumer or Trader)
 - □ Difference between buyer's real time load and contract commitments is cleared in the Spot Market:
 - If load higher than contracts, can buy the difference from the Spot market (price risk) if there is enough extra energy available (risk of non supply)
 - If load less than contracts, sells to the Pool at the Spot price;

Supply Contracts (Demand) (4)



Pool Settlement

- □ Pool = hourly transactions (energy, capacity, ancillary services)
- ☐ Monthly settlement = net result for each Participant
- CAMMESA calculates monthly amount each Participant must pay or be paid
 - Totals hourly payments due, when Participant buys
 - Totals hourly remuneration, when Participant sells
 - Net result = total of payments minus total remuneration
- □ Participant with a negative net result must pay
 - Amount due to each Participant with a positive net result
 - Amount paid assigned proportionally to each Participant with a positive result

Settlement

Distribution Companies

- □ Quality standards defined in Concession Contract
- Obligation to supply captive customers (obligation of expansions) within quality of service standards
- □ Penalties if fails to supply or if bellow quality standards
- □ Can import from other markets
- □ Tariffs pass trough:
 - Pool prices (through seasonal stabilized prices);
 - plus a regulated distribution margin, which includes capital costs, expansion and O&M costs, regulated network losses and profits
 - plus discounts when penalties are applied.

Generators

- □ Open access to new generation (no central planning)
- ☐ Specific hydro and nuclear regulation.
- □ Centralized economic dispatch (competition to generate).
- □ Can sell supply to large consumers and distribution companies through contracts
- ☐ Can buy and sell in the Spot market
- □ Can buy backup from other Generators through contracts
- □ Quality obligations related to ancillary services
- □ Can sell additional ancillary services
- ☐ Right to require system expansion
- □ Can export to other markets

Large Consumers

- □ Major (GUMA): more than 1 MW load
 - Must contract at least 50% of load
 - Hourly metering (can buy/sell in Pool)
 - Can import from other markets
- □ Minor (GUME): load between 2 MW and 100 kW
 - No Hourly metering, shape of load curve of Distribution company assumed
 - Must contract 100% of load
- □ Special (GUPA): load between 100 kW and 50 kW
 - No Hourly metering, shape of load curve of Concession Contracts
 - Must contract 100% of load

Traders

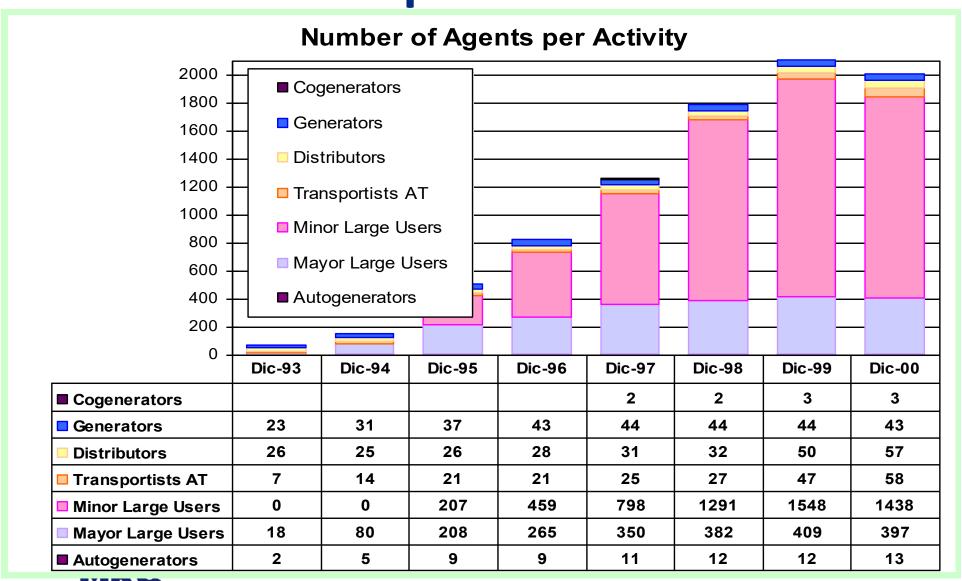
- ☐ Cannot be a Generation Company, Distribution Company or Transmission company
- ☐ Financial requirements (defined by Energy Secretariat in regulated commercial rules)
 - Deposit a guarantee for payments to the Pool
 - Capital assets requirements
- □ Can buy and sell through contracts and in the Spot market
- □ Role:
 - Load aggregator for GUMAs
 - Generation aggregation
 - Trade (import and export) with other markets
 - Absorbs differences in prices and market rules

Transmission Companies

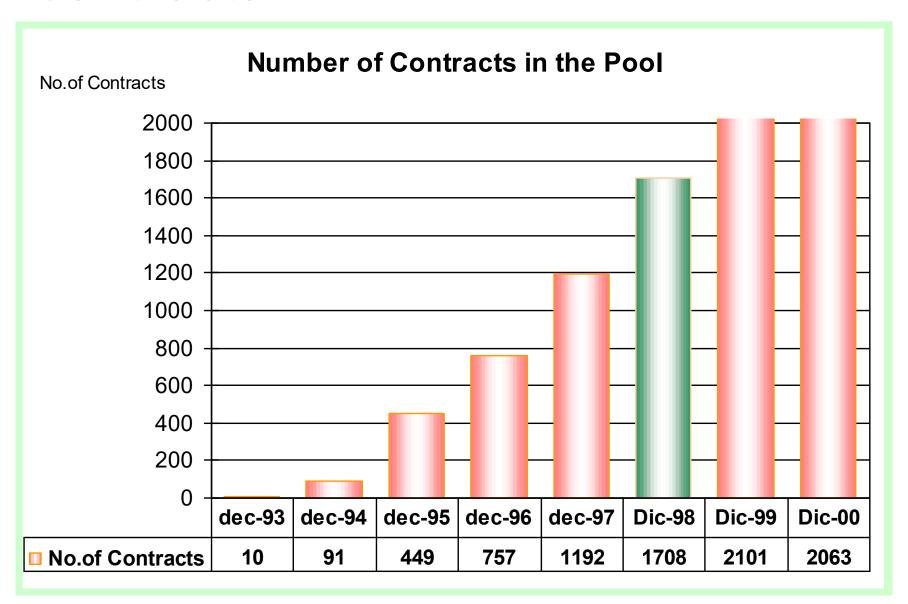
- ☐ Cannot buy or sale energy
- □ Quality of service standards defined in Concession Contract
- ☐ Responsible for O&M of existing transmission facilities
- □ Loss of revenues if bellow quality standards (unavailability)
- □ No obligation to expand.
- ☐ Right to compete in system expansion
- ☐ Regulated tariffs
 - Multiyear allowed revenue (5 years) with reductions if fails in availability standards
 - Public hearing for tariff discussion, after each 5 year term.

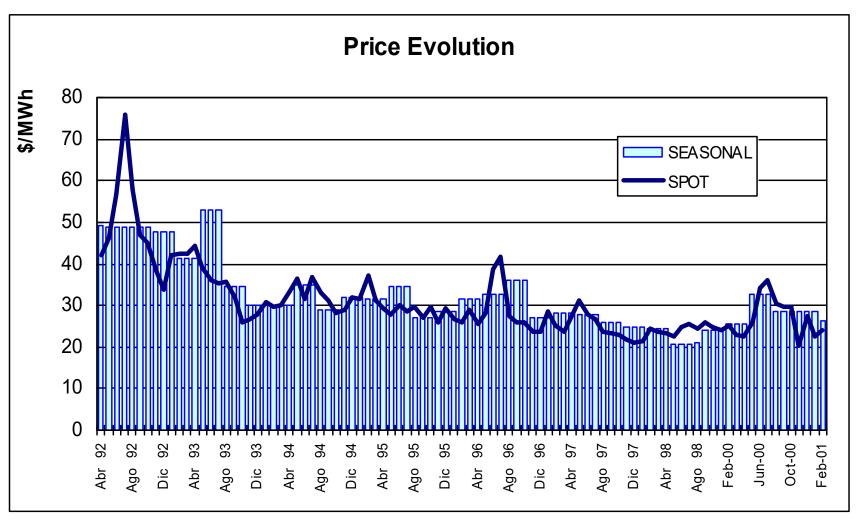
Transmission Expansions

- □ Initiated by requirement of market Participants
 - Initiator must be "user" of the expansion
- □ Requires authorization of the regulator
 - Other users can present opposition (30% rule)
 - Expansion approved if expansion is for "public benefit" and there is no opposition
- ☐ Built, owned, maintained and operated by a new Independent Transmission Company
- □ Competitive procurement supervised by the regulator

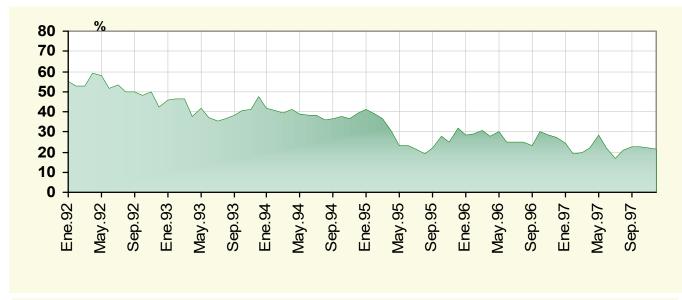


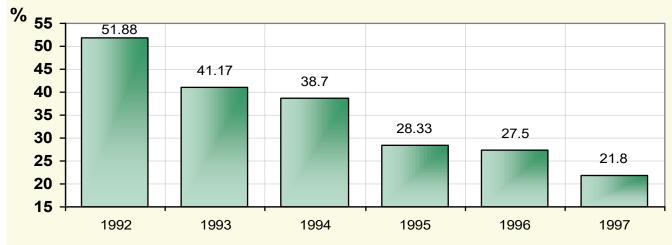
Miscellanea


- Real time operation data
 - □ SCADA owned by each regional control centers
 - ☐ CAMMESA has links with regional SCADA systems
 - □ Tele-control by regional control centers
- Telecommunications
 - ☐ Responsibility of each Participant
- Commercial metering
 - □ Participant must provide metering (regulated standards)
 - □ CAMMESA collect data, audit meters and habilitation

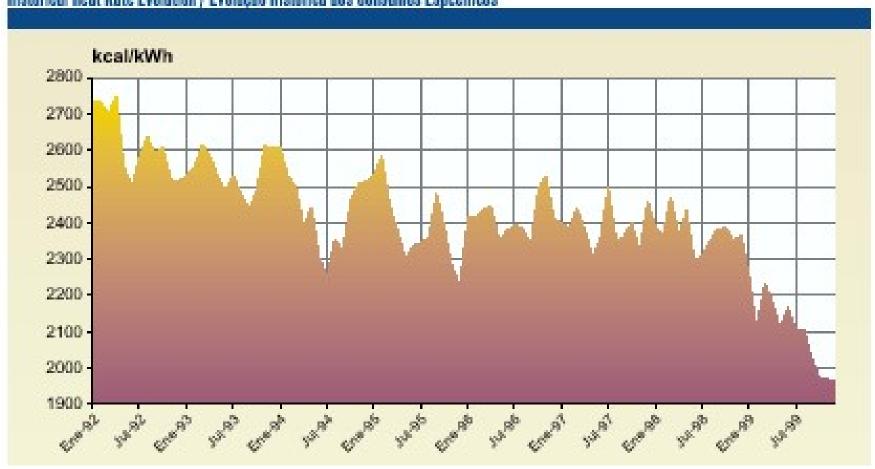

Market Participants

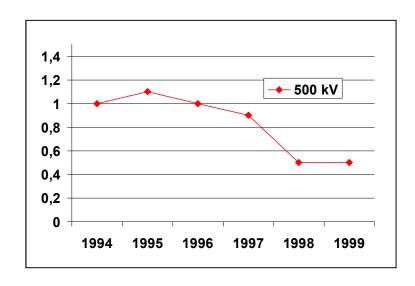
Contracts

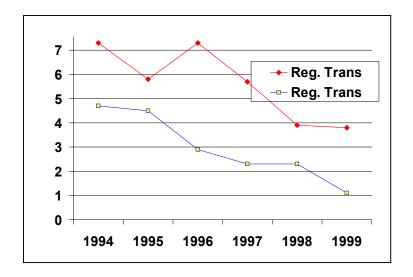



Spot Price Evolution

Thermal Unavailability




Average Heat Rates Evolution



Transmission Service Quality

 λ = number of forced outages / km line

